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Abstract  

Present paper describes some fundamental concepts including Bayesian rule, Bayesian network, impact of Markov 

condition and Markov equivalence, simple inference and OR-gate inference in the domain of Bayesian network 

inference (BNI). Bayesian network finds its applications widely in applied statistics, production industries, machine 

learning, data mining, diagnosis etc. In this paper, our central attention has been made to explore the essence of 

inference mechanism as a significant domain of Bayesian network (BN) by way of presenting numerical illustrations 

too. Particularly, significant role and special aspects of inference mechanism in Bayesian network inference have been 

focused. At the end, some important conclusions are drawn.  

Keywords: Bayesian network inference, Bayesian rule, Markov condition and Markov equivalence, OR-Gate 

inference, Pearl‟s message propagation algorithm, posterior probability, optimal factoring, serial path, convergent path, 

divergent path, uncoupled chain etc. 

  

1. Introduction 

Bayesian network is applied widely in applied statistics, graph theory, production industries, machine learning, data 

mining, diagnosis etc. Basically there are three main domains-inference mechanism, parameter learning and structure 

learning in Bayesian network inference. In this paper, the first domain of inference mechanism has been dealt 

exhaustively. The inference mechanism articulates the usability of Bayesian network. Bayesian network has a solid 

evidence-based inference which is familiar to human intuition. However Bayesian network causes a little confusion 

because there are many complicated concepts, formulas and diagrams relating to it. Such concepts should be organized 

and presented in clear manner so as to be easy to understand it. A few researchers [1, 2, 3…7] in this direction are worth 

mentioning. Keeping in view the aforesaid complexity of Bayesian network, the present paper includes two main parts 

that cover principles of Bayesian network: part 1- Basic concepts and part 2- Bayesian network inference. 
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2. Basic Concepts 

2.1 Bayesian Rule 

Bayesian inference, a form of statistical method, is responsible for collecting evidences to change the current belief in 

given hypothesis. The more evidences are observed, the higher degree of belief in hypothesis is. First, this belief was 

assigned an initial probability. When evidences were gathered enough, the hypothesis is considered trustworthy. 

Bayesian inference was based on Bayesian rule with some special aspects: 

                                                    
( | )* ( )

( | )
( )

P E H P H
P H E

P E
                                                                (2.1.1) 

where H is probability variable denoting a hypothesis existing before evidence and E is also probability variable notating 

an observed evidence. 

P(H) is prior probability of hypothesis and P(H | E) which is the conditional probability of H with given E, is called 

posterior probability. It tells us the changed belief in hypothesis when occurring evidence. 

P(E) is the probability of occurring evidence E together all mutually exclusive cases of hypothesis. If H and E are 

discrete, 
H

HPHEPEP )(*)|()(  otherwise  dHHfHEfEf )()|()( with H and E being continuous,  f denoting 

probability density function. 

When P(E) is constant value, P(E | H) is the likelihood function of H with fixed E. Likelihood function is often used to 

estimate parameters of probability distribution. 

2.2 Bayesian Network 

Bayesian network (BN) is the directed acyclic graph (DAG) in which the nodes (vertices) are linked together by directed 

edges (arcs); each edge expresses the dependence relationships between nodes. If there is the edge from node A to B, we 

call “A causes B” or “A is parent of B”, in other words, B depends conditionally on A. So the edge A→B denotes parent-

child, prerequisite or cause-effect relationship. Otherwise there is no edge between A and B, it asserts the conditional 

independence. Let V={X1, X2, X3,…, Xn} and E be a set of nodes and a set of edges, the BN is denoted as below: 

G=(V, E) where G is the DAG, V is a set of nodes and E is a set of edges 

 

Figure 2.2.1: Bayesian network 

Note that node Xi is also random variable. In this paper the uppercase letter (for example X, Y, Z, etc.) denotes random 

variables or set of random variables; the lowercase letter (for example x, y, z, etc.) denote its instantiation. We should 

glance over other popular concepts. 

 If there is an edge between X and Y (X→Y or X←Y) then X and Y are called adjacent each other (or incident 

to the edge). 

X 

Y Z 

T 
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 Given k nodes {X1, X2, X3,…, Xk} in such a way that every pair of node (Xi, Xi+1) are incident to the edge 

Xi→Xi+1 where 1   i  k-1, all edges that connects such k nodes compose a path from X1 to Xk denoted as 

[X1, X2, X3,…, Xk] or X1→X2→…→Xk. The nodes X2, X3,…, Xk-1 are called interior nodes of the path. The 

sub-path Xm→…Xn is a path from Xm to Xn: Xm→Xm+1→…→Xn where 1  m<n  k. The directed cycle is a 

path from a node to itself. The simple path is a path that has no directed cycle. The DAG is the graph that 

has no directed cycle. 

 If there is a path from X to Y then X is called ancestor of Y and Y is called descendant of X. If Y isn‟t a 

descendant of X, Y is called non-descendent of X. 

 If the direction isn‟t considered then edge and path are called link and chain, respectively. Link is denoted 

A – B. Chain is denoted A – B – C, for example. 

Graph G is a tree if every node except root has only one parent. G is called single-connected if there is only one chain (if 

exists) between two nodes. Almost BN (s) surveyed here are single-connected DAG (s). 

 

The strength of dependence between two nodes is quantified by conditional probability table (CPT). In continuous case, 

CPT becomes conditional probability density function (CPD). So each node has its own local CPT. In case that a node 

has no parent, its CPT degenerates into prior probabilities. For example, suppose Xk is binary node and it has two parents 

Xi and Xj, the CPT (or CPD) of Xk which is the conditional probability P(Xk | Xi, Xj) has eight entries: 

 

P(Xk=1|Xi=1, Xj=1) P(Xk=0|Xi=1, Xj=1) 

P(Xk=1|Xi=1, Xj=0) P(Xk=0|Xi=1, Xj=0) 

P(Xk=1|Xi=0, Xj=1) P(Xk=0|Xi=0, Xj=1) 

P(Xk=1|Xi=0, Xj=0) P(Xk=0|Xi=0, Xj=0) 

 

It is asserted that if Xi is binary node and has n parents then its CPT has 2
n+1

 entries. However only 2
n
 entries are 

specified in practice due to P(Xi=0 | …) =  1- P(Xi=1|…) when Xi is binary. In case that Xi has k possible values, each 

CPT has k
n
 entries. 

 

Example 2.2.1: Suppose event “cloudy” is cause of event “rain”. Events “rain” and “sprinkler” which in turn is cause of 

“grass is wet”. So we have three causal-effect relationships of: 1-cloudy to rain, 2- rain to wet grass, 3-sprinkler to wet 

grass. This model is expressed below by BN with four nodes and three arcs corresponding to four events and three 

relationships. Every node has two possible values True (1) and False (0) together its CPT. 

 

 

Figure 2.2.2: Bayesian network with CPT (s) in example 2.2.1 

Let PAi be the set of parents of node Xi, the joint probability distribution of whole BN is defined as product of CPT(s) or 

CPD(s) in continuous case of all nodes. 
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n
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21 )|(),...,,(                                                      (2.2.2) 

So BN is represented by its joint probability distribution P and its DAG. (G, P) where G=(V, E) is a DAG and P is joint 

probability distribution. 

Suppose Ωi is the subset of PAi such that Xi must depend conditionally and directly on every variable in Ωi. In other 

words, there is always an edge from each node in Ωi to Xi and no intermediate node between them. This criterion is 

called as Markov condition which will be discussed later. The joint probability P is re-written as below: 

                                                  



n

i

i
in

XPXXXP
1

21
)|(),...,,(                                                        (2.2.3) 

Back the “wet grass” BN in example 2.2.1, the joint probability is: 

P(C, R, S, W)=P(C)*P(R)*P(R|C)*P(S|C)*P(W|C,R,S) 

We have P(S | C) = P(S) due to the conditional independence assertion about variables S and C. Furthermore, because S 

is intermediate node between C and W, we should remove C from P(W | C, R, S), hence, P(W | C, R, S) = P(W | R, S). In 

short, the joint probability is shown below: 

 

P(C, R, S, W)=P(C)*P(S)*P(R|C)*P(W|R,S) 

2.3 Bayesian Network Inferences 

Using Bayesian reference, we need to compute the posterior probability of each hypothesis node in network. In general, 

the computation based on Bayesian rule is known as the inference in Bayesian network. 

Reviewing example 2.2.1, suppose W becomes evidence variable which is observed the fact that the grass is wet, so, W 

has value 1. There is request for answering the question: how to determine which cause (sprinkler or rain) is more 

possible for wet grass. Hence, we will calculate two posterior probabilities of S (=1) and R (=1) in condition W (=1). 

These probabilities are also called explanations for W. 
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Because of P(R=1|W=1) <  P(S=1|W=1), it is concluded that sprinkler is the most likely cause of wet grass. Note that 

two above formulas which are also variants of Bayesian rule (see formula 2.1.1) will be surveyed more carefully in the 

“Bayesian network inference” section. 

2.4 Markov Condition and Markov Equivalence 

The inference in BN becomes complex and ineffective when the size of BN is large. Suppose BN has n binary nodes. In 

the worst case, each node has n-1 parents, thus, the joint probability has n*2
n
 entries. There is a boom of CPT (s). There 

is a restrictive criterion so-called Markov condition that makes the relationships (also CPT) among nodes simpler. Given 

Bayesian network (G, P) and three sets of nodes: A={Xi,…, Xj}, B={Xk,…, Xl} and C={Xm,…, Xn}: 

- The denotation IP(A,B) or IG(A,B) indicates that A and B are independent. 

-  The denotation IP(A,B|C ) or IG(A,B|C ) indicates that A and B conditional independent given C. 

Let (G, P) be Bayesian network, Markov condition is stated that every node X is conditional independent from its non-

descendants given its parent. In other word node X is only dependent on its previous nodes (directed parents). 
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EX  , IP(X, NX | PAX) 

where E is the set of edges in G, NX and PAX are set of non-descendants of X and parents of X, respectively.  

 

Figure 2.4.1: Example about Markov condition: (a) satisfy, (b) not satisfy 

Because inference and structure learning algorithms are based on Markov condition, please pay attention to it. 

Suppose Bayesian (G, P) satisfies Markov condition, it is necessary to find out or check whether a node (or a set of 

nodes) Z that separates a node (or a set of nodes) X from another node (or a set of nodes) Y. It means that whether there 

is IP(X, Y | Z). In this case, X and Y are called d-separated by Z. 

There are some important concepts that constitute the d-separation concept: 

 The chain X→Z→Y or X←Z←Y is called serial path. 

 The chain X→Z←Y is called convergent. 

 The chain X←Z→Y is called divergent. 

 The chain X–Z–Y is called uncoupled chain if X and Y aren‟t adjacent. 

Of course, serial path, convergent path and divergent path are uncoupled chain. 

 

Figure 2.4.2: Serial path (a), convergent path (b), divergent path (c), and uncoupled chain (d) 

Let X, Y and Z be sets of nodes where X, Y, Z V. Given the chain p between X and Y, p is blocked by Z if and only if 

one of two conditions is satisfied: 

Z 

X 

X 

X 

Y 

X 

Z 

X 

X 

X 

Y 

X 

(a) (b) 

X 

Y 

Z 

X Y 

Z 

X Y 

Z 

X Y 

Z 

(a) (b) (c) (d) 
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- There is an intermediate node MZ on p so that all edges on p incident to M are serial or divergent at M. 

- There is an intermediate node M on p so that: 

 M Z and all descendants of M Z  

 All edges op p incident to M are convergent. 

 

 

Figure 2.4.3: The chain X–Y–Z–W in (a) is blocked by {Y, Z} because edges incident to Y are divergent at Y. The 

chain X–Y–Z–W–T in (b) is blocked by {Z, W} because there is such a node Y on chain that Y {Z, W}, its 

descendant M  {Z, W}, and edges incident to Y are convergent at Y . 

X and Y are d-separated by Z if all chains between X and Y are blocked by Z. Z is also called a d-separation of G. 

 
Figure 2.4.4: {X1, X2} is d-separated from {X5, X6} by {X3, X4} 

BN (s) which have the same set of nodes are Markov equivalent if and only if they have same d-separations. In other 

words, BN (s) that are Markov equivalent have the same independences. Given G1=(V, E1) and G2=(V, E2), we have: 

)|,()|,(,,,
21

CBAICBAIVCBA GG   

where A, B, C are mutually disjoint sub-set of V. Note that G1 and G2 must be DAG and satisfy Markov condition. 

The goal of giving “Markov equivalent” concept is to represent BN (s) that have the same structure and joint probability. 

So the representation of such BN (s) is called Markov equivalent class which is also a Bayesian network. In conclusion, 

X 

Y Z 

W 

X 

Y 

Z W 

T 

M 
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Markov equivalence divides all DAG (or BN) into disjoint Markov equivalent classes. In practice, Markov equivalent 

class is often find out or surveyed instead of considering many BN (s). 

 

3. Bayesian Network Inference 

3.1. Simple Inference 

The essence of Bayesian reference is to compute the posterior probabilities of nodes given evidences. Note that 

evidences or conditions are also nodes which are observed and have concrete values. Back example 1.1 “wet grass”. The 

posterior probability of R = 1 (rain) given W =1 (wet grass) is the ratio of the marginal probability of R, W over C, S to 

the marginal probability of W over C, R, S. 
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Let V={X1, X2,… Xn} be a whole set of nodes. Let D={Xm, Xu,…, Xn} be a set of evidences, D V. Let d=(xm, xu,…, xn} 

be the instantiation of D.  In general case, the marginal probability of Xk=xk is: 
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where P(X1, X2,…, Xn) is the global joint probability. 

The marginal probability of D = d is: 
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The probability of Xk = k given D = d is: 
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                                   (3.1.1) 

The above formula is the basic idea of simple inference. Note that it is also a variant of Bayesian rule (see formula 

2.1.1). But the cost of computing it based on marginal probabilities is very high because there are a huge number of 

numeric operations such as additions and multiplications in computation expression. If the joint probability has many 

terms, brute force method for determining combinations of such operations is impossible. There are three main 

approaches that improve this computation: 

 

 Taking advantage of Markov condition: Pearl‟s message propagation is well-known algorithm. 

 OR-gate model inference which simulates OR-gate electronic circuit. 

 Reducing the amount of numeric operations computed in marginal probability. Optimal factoring is 

the well-known technique. 

3.2. Pearl’s Message Propagation Algorithm 

Suppose Bayesian network is DAG G=(E, V) which is a tree having only one root. Given a set of evidence nodes D V; 

every node in D has concrete value. Let DX is the sub-set of D including X and descendants of X and let NX be the sub-set 

of D including X and non-descendant of X. Let CX and PAX are children and parents of X respectively and R be root node 

and O be evidence node, OD. 
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Figure 3.2.1: X, DX and NX. Note that NX is green and DX is red 

The essence of inference is to compute the posterior probability P(X|D) for every X. We have: 

)|()|(
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where 
),(

)(

XX

X

NDP

NP
 is the constant independent from X. 

Let λ(X) and π(X) be P(DX|X) and P(X|NX), respectively. Then we have 

                                                                        P(X|D) = αλ(X) π(X)                                                                      (3.2.1) 

The λ(X) and π(X) are called λ value and π value of X, respectively. 

For each child Y of X, let λY(X) be λ message that connects X and Y. Note that λY(X) is conditional probability of DY 

given X.  

                                    
YY

YYY
XYPYXYPYDPXDPX )|()()|()|()|()(                                          (3.2.2) 

For each parent Z of X, let πX(Z) be π message that connects Z and X. Note that πX(Z) is conditional probability of X 

given NX. 

X 

NX 
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 Don‟t worry about πX(Z) is proportioned to 
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XCK

K

Z

ZZ   by removing constant k because the posterior 

probability P(X|D) itself is also proportioned to λ(X) and π(X) via constant α. These constants will be eliminated when 

P(X|D) is normalized. Now we have: 

- Value λ(X) = P(DX|X) 

- Message 
Y

YY
XYPYXDPX )|()()|()(  for each Y

X
C  

- Value π (X) = P(X|NX) 

- Message 



}{

)()()|()(
XCK

KXX

Z

ZZNZPZ   for each ZPAX. 

The λ and π values are updated according to λ and π messages. Whenever evidence O D occurs, Pearl‟s algorithm 

propagates downwards π message and propagates upwards λ message in order to update λ value and π value of each 

variable X so that the posterior probability P(X|D) can be computed. The process of upwards-downwards propagation 

spreads over all variables of network. 
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Figure 3.2.2: Pearl‟s propagation algorithm (X is focused node) 

Please pay attention to following notices when updating λ value and π value at certain variable X: 

1. If X D and suppose X‟s instantiation (value) is x then: 

λ(X=x) = P(x|x)= 1 due to XDX and Markov condition. So λ(X  x) = 0 

π (X=x) = P(x|x)= 1 due to XNX and Markov condition. So π (X  x) = 0 

P(X=x|D) = 1 and P(X  x|D) = 0. 

2. If XD and X is leaf then: 

λ(X) = P(Ø|X) = 1 due to DX= Ø 

π (X) is computed as if X were intermediate variable. 

P(X|D)= απ(X) 

3. If XD and X is root then: 

λ (X) is computed as if X were intermediate variable. 

π (X)=P(X|Ø)=P(X) 

P(X|D)= αλ(X)P(X) 

4. If XD and X is intermediate variable then: 





XXX

CY

Y

CY

Y

CY

YX
XXDPXDPXDPX )()|()|()|()(    

(Because X‟s children are mutually independent) 

 
Z

X

Z

XX
ZZXPNZPZXPNXPX )()|()|()|()|()(   

where Z is parent of X. 

P(X|D)= αλ(X)π(X) 

Pseudo-code for Pearl‟s algorithm shown below includes four functions: 

 Function “void init” initialize π value for every node. At that time the set of evidence nodes D is 

empty. 

 Function “void update” is executed whenever evidence node O occurs. This function adds O to set D, 

propagates upwards λ message over all parents of O by calling function “void propagate_up”, and 

propagates down π message over all children of O by calling function “void propagate_down”. 

 Function “void propagate_up_λ_message” computes λ value and posterior probability of current node, 

and continues to propagate upwards and downwards λ, π messages by calling itself and function “void 

propagate_down_π_message”. Process of propagation stops when there is no node to be propagated. 

X 

Z 

Y T 

πX(Z) λX(Z) 

λT(X) 

πT(X) 

λY(X) 
πY(X) 
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 Function  “void propagate_down_π_message” computes π value and posterior probability of current 

node, and continues to propagate downwards π message by calling itself. Process of propagation stops 

when there is no node to be propagated. 

void init(G, D) 

{ 

D=Ø; 

for each XV 

{ 

λ(X) = 1;                          //due to D = Ø 

for each parent Z of X     //propagate up λ message 

λX(Z) = 1;                     // due to D = Ø 

} 

P(R|D) = P(R);                    //posterior probability of root node  

π(R) = P(R);                        // π value 

 

for each child K of R           //browse root’s children 

propagate_up_π_message(R, K); 

} 

 

void update(O, o) 

{ 

D = DO 

λ(O=o) = π(O=o) = P(O=o|D) = 1;        //due to O D  

λ(O  o) = π(O  o) = P(O  o|D) = 1;    //due to OD 

 

if O  R and O’s parent Z D               // O isn’t root and parent of O doesn’t belong to D 

propagate_up_ λ_message(O, Z); 

 

for each child K of O such that K D  //browse O’s children 

propagate_up_π_message(O, K); 

} 

 

void propagate_up_λ_message(Y, X) 

{ 


Y

Y
XYPYX )|()()(  ;  //Y propagate upwards λ message 





XCY

Y
XX )()(  ;            //update λ value 

P(X|D)= αλ(X)π(X);           //compute posterior probability of X 

normalize P(X|D);              //eliminate constant α 

 

if X  R and X’s parent Z D 

propagate_up_ λ_message(X, Z); 

 

for each child K of X such that K  Y and K D  //browse O’s children 

propagate_up_π_message(X, K); 

} 

 

void propagate_down_π_message(Z, X) 

{ 





}{

)()()(
XCK

KX

Z

ZZZ  ;     //Y propagate downwards π message 
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Z

X
ZZXPX )()|()(  ;  //update π value 

P(X|D)= αλ(X)π(X);             //compute posterior probability of X 

normalize P(X|D);               //eliminate constant α 

 

for each child K of X such that K D  //browse O’s children 

propagate_up_π_message(X, K); 

} 

 

Example 3.2.1: Given Bayesian network shown in figure 3.2.3, suppose evidence X has value 1. Hence, we need to 

compute posterior probabilities of T, Y, Z in condition X=1. Firstly, function “void init” is called to initialize network.  

 

Figure 3.2.3: Bayesian network with CPT (s) 

Function init(G,D) is executed: 

D = Ø 

λ(Z= 1) = λ(Z = 0) = 1 

λ(X = 1) = λ(X = 0) = 1 

λ(Y = 1) = λ(Y = 0) = 1 

λ(T = 1) = λ(T = 0) = 1 

 

λX(Z=1) = λX(Z=0) = 1 

λY(Z=1) = λY(Z=0) = 1 

λT(X=1) = λT(X=0) = 1 

 

P(Z=1|d) = P(Z=1) = 0.6. Note that let d be instantiation of D 

P(Z=0|d) = P(Z=0) = 0.4 

π(Z=1) = P(Z=1) = 0.6 

π(Z=0) = P(Z=0) = 0.4 

 

Calling propagate_down_π_message(Z, X) 

Calling propagate_down_π_message(Z, Y) 

 

Z 

X Y 

T 

P(Z=1)    

P(Z=0) 

 

    0.6         0.4 

Z     P(Y=1)    

P(Y=0) 

 

1        0.6         0.4 

 

0        0.3         0.7 

Z     P(X=1)    

P(X=0) 

 

1        0.7         0.3 

 

0        0.2         0.8 

X     P(T=1)    

P(T=0) 

 

1        0.9         0.1 

 

0        0.4         0.6 
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Then, function propagate_down_π_message(Z, X) is executed: 

 

πX(Z=1)= π(Z=1) λX(Z=1)=1*0.6=0.6 

πX(Z=0)= π(Z=0) λX(Z=0)=1*0.4=0.4 

 

π(X=1) = P(X=1|Z=1) πX(Z=1) + P(X=1|Z=0) πX(Z=0) = 0.7*0.6 + 0.2*0.4 = 0.5 

π(X=0) = P(X=0|Z=1) πX(Z=1) + P(X=0|Z=0) πX(Z=0) = 0.3*0.6 + 0.8*0.4 = 0.5 

 

P(X=1) = α λ(X = 1) π(X=1)=α1*0.5=α0.5 

P(X=0) = α λ(X = 0) π(X=0)=α1*0.5= α0.5 

 

P(X=1) = 5.0
5.05.0

5.0





 

P(X=0) = 5.0
5.05.0

5.0





 

 

Calling propagate_down_π_message(X, T) 

 

Then, function propagate_down_π_message(X, T) is executed: 

 

πT(X=1)= π(X=1) =0.5 

πT(X=0)= π(X=0) =0.5 

 

π(T=1) = P(T=1|X=1) πT(X=1) + P(T=1|X=0)πT(X=0) = 0.9*0.5 +  0.4*0.5 = 0.65 

π(T=0) = P(T=0|X=1) πT(X=1) + P(T=0|X=0)πT(X=0) = 0.1*0.5 +  0.6*0.5= 0.4 

 

P(T=1) = α λ(T = 1)π(T=1) = α1*0.65= α0.65 

P(T=0) = α λ(T = 0)π(T=0) = α1*0.4= α0.4 

 

P(T=1) = 62.0
4.065.0

65.0





 

P(T=0) = 38.0
4.065.0

4.0





 

 

Then function propagate_down_π_message(Z, Y) is executed: 

 

πY(Z=1)= π(Z=1)λY(Z=1) =1*0.6=0.6 

πY(Z=0)= π(Z=0)λY(Z=0)=1*0.4=0.4 

 

π(Y=1) = P(Y=1|Z=1)πX(Z=1) + P(Y=1|Z=0)πX(Z=0) = 0.6*0.6 + 0.3*0.3 = 0.45 

π(Y=0) = P(Y=0|Z=1)πX(Z=1) + P(Y=0|Z=0)πX(Z=0) = 0.3*0.4 + 0.8*0.7 = 0.68 

 

P(Y=1) = αλ(Y = 1)π(Y=1) = α1*0.45= α0.45 

P(Y=0) = αλ(Y = 0)π(Y=0) = α1*0.68= α0.68 

 

P(Y=1) = 4.0
68.045.0

45.0





 

P(Y=0) = 6.0
68.045.0

68.0
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The initialized Bayesian network is shown below: 

 

Figure 3.2.4: Initialized Bayesian network 

When X becomes evidence and gains value 1, the function update(X, 1) is called: 

D = DX={X} 

Because d is instantiation of D, we have d = {X=1} 

λ(X=1) = π(X=1)=P(X=1|d)=1 

λ(X=0) = π(X=0)=P(X=0|d)=0 

 

Calling propagate_up_λ_message(X, Z) 

Calling propagate_down_π_message (X, T) 

 

Then, function propagate_up_λ_message(X, Z) is executed: 

 

λX(Z=1) = λ(X=1)P(X=1|Z=1) + λ(X=0)P(X=0|Z=1) = 1*0.7 + 0*0.3 = 0.7 

λ(Z=1) = λX(Z=1)λY(Z=1) = 0.7*1 = 0.7 

P(Z=1|d) = αλ(Z=1)π(Z=1)= α0.7*0.6 = α0.42 

 

λX(Z=0) = λ(X=1)P(X=1|Z=0) + λ(X=0)P(X=0|Z=0) = 1*0.2 + 0*0.8 = 0.2 

λ(Z=0) = λX(Z=0)λY(Z=0) = 0.2*1 = 0.2 

P(Z=0|d) = αλ(Z=0) π(Z=0)= α0.2*0.4 = α0.08 

 

P(Z=1|d) = 84.0
08.042.0

42.0





 

P(Z=0|d) = 16.0
08.042.0

08.0





 

Calling propagate_down_π_message(Z, Y) 

 

Then, function propagate_down_π_message (Z, Y) is executed: 

 

πY(Z=1)= π(Z=1) λY(Z=1) =1*0.6=0.6 

πY(Z=0)= π(Z=0) λY(Z=0)=1*0.4=0.4 

 

Z 

X Y 

T 

P(Z=1)    P(Z=0) 

 

    0.6         0.4 

P(Y=1)    P(Y=0) 

 

   0.4         0.6 

 

P(X=1)    P(X=0) 

 

     0.5         0.5 

P(T=1)    P(T=0) 

 

  0.62        0.38 
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π(Y=1) = P(Y=1|Z=1) πX(Z=1) + P(Y=1|Z=0) πX(Z=0) = 0.6*0.6 + 0.3*0.4 = 0.48 

π(Y=0) = P(Y=0|Z=1) πX(Z=1) + P(Y=0|Z=0) πX(Z=0) = 0.3*0.6 + 0.8*0.4 = 0.5 

 

P(Y=1) = α λ(Y = 1) π(Y=1) = α1*0.48= α0.48 

P(Y=0) = α λ(Y = 0) π(Y=0) = α1*0.5= α0.5 

 

P(Y=1) = 49.0
5.048.0

48.0





 

P(Y=0) = 51.0
5.048.0

5.0





 

 

Then function propagate_down_π_message(X, T) is executed 

 
πT(X=1)= π(X=1) =1 

πT(X=0)= π(X=0) =0 

 

π(T=1) = P(T=1|X=1) πT(X=1) + P(T=1|X=0) πT(X=0) = 0.9*1 +  0.4*0 = 0.9 

π(T=0) = P(T=0|X=1) πT(X=1) + P(T=0|X=0) πT(X=0) = 0.1*1 +  0.6*0= 0.1 

 

P(T=1) = α λ(T = 1) π(T=1) = α1*0.9= α0.9 

P(T=0) = α λ(T = 0) π(T=0) = α1*0.1= α0.1 

 

P(T=1) = 9.0
1.09.0

9.0





 

P(T=0) = 1.0
1.09.0

1.0





 

 

Finally, all posterior probabilities are computed as in following figure 

 

Figure 3.2.5: All posterior probabilities are computed after running Pearl algorithm (X is evidence) 

 

Z 

X Y 

T 

P(Z=1)    P(Z=0) 

 

  0.84        0.16 

P(Y=1)    P(Y=0) 

 

   0.49        0.51 

 

P(X=1)    P(X=0) 

 

     1             0 

P(T=1)    P(T=0) 

 

  0.9          0.1 
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3.3. OR-Gate Inference 

In OR-gate electric circuit, the output value becomes TRUE if there is at least one of inputs being TRUE. Suppose every 

node is binary, OR-gate inference in Bayesian network simulates such circuit based on three assumptions: 

- Cause inhibition: Given a cause-effect relationship denoted by edge X→Y, there is a factor I that inhibits X from 

causing Y. Factor I is called inhibition of X. That the inhibition I is turned off is the prerequisite of X causing Y. 

OFF  turned0 II   

ON  turned1 II   

- Inhibition independence: Inhibitions are mutually independent. For example inhibition I1 of X1 is independent 

from inhibition I2 of X2. 

- OR condition: Suppose we have a set of cause-effect relationships in which Y is the effect of many causes X1, 

X2,…, Xn (see following figure). Let Ii be the inhibition of Xi. The effect Y cannot happen (Y=0) if at least one 

of Xi is equal 0 or one of inhibitions is ON:  

010:  YIXi
ii

 

 

Figure 3.3.1: Cause-effect relationships 

Suppose we have n causes X1, X2,…, Xn and one result Y. According to “cause inhibition” and “inhibition independence” 

assumptions, let Ii be the inhibition of Xi. Let Ai be dummy variable so that Ai is ON (=1) if Xi is equal to 1 and Ii is OFF 

(=0).  

P(Ai = ON | Xi=1, Ii=OFF) = 1 

P(Ai = ON | Xi=1, Ii=ON) = 0 

P(Ai = ON | Xi=0, Ii=OFF) = 0 

P(Ai = ON | Xi=0, Ii=ON) = 0 

 

P(Ai = OFF | Xi=1, Ii=OFF) = 0 

P(Ai = OFF | Xi=1, Ii=ON) = 1 

P(Ai = OFF | Xi=0, Ii=OFF) = 1 

P(Ai = OFF | Xi=0, Ii=ON) = 1 

 

Applying “OR condition”, the condition probability of Y is equal 0 (Y never happens) if at least one Ai is ON. It means 

that Y happens (Y=1) if all Ai (s) are ON. 

P(Y=0|  Ai=ON) = 0 

P(Y=0| Ai=OFF) = 1 

P(Y=1| Ai=ON) = 1 

P(Y=1|  Ai=OFF) = 0 

 

X1 X2 X3 Xn 
… 

Y 
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Figure 3.3.2: OR-gate model 

Now the strength of each cause-effect relationship Xi→Y is quantified by the CPT P(Y|Xi). Suppose causes (X1, 

X2,…,Xi,…, Xn) become evidences having values (x1, x2,…, xi,…, xn). Let P(Xi=1) = pi be the probability of Xi = 1. The 

probability of Xi „s inhibition is the inverse: 

P(Ii=ON) = 1 – P(Xi=1) 

Let O be the set of such i that Xi = 1. 

1,  iXOi  

The goal of inference is to determine the posterior probability P(Y| X1, X2,…,Xi,…, Xn). We have: 

OFF)=Aon  focusjust  we

0, = ON)=A |0=P(Yy probabilit lconditiona  thecauses ON equal is Aany  that (Because

)|(

)Xon dependent only  is A Because(

)|(),...,|0(

)tindependenmutually  are (s) A  toDue(

),...,|(),...,|0(

)yprobabilit  totalof law  the toDue(

),...,|,...,(),...,|0(

),...,|0(

i

ii

ii

,...,

11

i

,...,

1111

,...,

111111

11

1

1

1



 

 













i
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aa i

iiinn

aa i

nninn

aa

nnnnnn

nn

xXOFFAP

xXAPaAaAYP

xXxXAPaAaAYP

xXxXaAaAPaAaAYP

xXxXYP

n

n

n

 

X1 I1 X2 I2 Xn In 

A1 A2 An 

Y 

… 

1)|0(

0)|0(





OFFAYP

ONAYP

i

i

 

0...)|( Otherwise
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ONAP

OFFIXONAP

i
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P(Ii=ON) = 1 – P(Xi=1)  
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Oi

i

Oi

ii

Oi

ii

Oi

iiiiiiii

Oi

iiiiiiii

i

iiiiiiiiii

XP

XPXPXPXP

OFFIPOFFIXOFFAPONIPONIXOFFAP

OFFIPOFFIXOFFAPONIPONIXOFFAP

OFFIPOFFIxXOFFAPONIPONIxXOFFAP



























))(1(

))(1))(1(1())(0))(1(1(

))(),1|()(),1|((

))(),1|()(),1|((

))(),|()(),|((

 

In conclusion, we have 

                                                             P(Y=0|X1,X2,…, Xn) = 



Oi

i
XP ))(1(                                                      (3.3.1)  

                                                           P(Y=1|X1,X2,…, Xn) = 1 –



Oi

i
XP ))(1(                                                   (3.3.2) 

Where O is the set of such i that Xi = 1. 

Example 3.3.1: Given cause-effect relationship shown in following figure. Given prior probabilities of causes X1, X2, X3 

are 0.2, 0.5, 0.3, respectively. We need to compute the conditional probability of effect P(Y=1|X1=1, X2=0, X3=1). 

 

Figure 3.3.3: Example of OR-gate inference  

Applying formula 3.3.1, we have: 

P(Y=1| X1=1, X2=0, X3=1) =  1 – (1 – P(X1=1))(1 –P(X3=1)) = 1 – 0.8*0.7 = 0.44 

4. Optimal Factoring Technique 

The basic idea of optimal factoring technique is to reduce the amount of numeric operations by changing the order of 

combinations of such operations. Back example 2.2.1, given joint probability P(C, R, S, 

W)=P(C)*P(S)*P(R|C)*P(W|R,S), the marginal probability of R = 1 is factorized as below: 

 
SC

SRWPCRPSPCPWRP
,

),1|1()|1()()()1,1(  

X2 X1 X3 

Y 

P(X1) = 0.2 P(X2) = 0.5 P(X3) = 0.3 
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Because each binary variable has 2 values, there are 2
2
 combinations of C and S. Each product has 3 multiplications. So 

the total number of required multiplications is 3*2
2
 = 12. Now the ordering of expression is changed by the factorization 

as below: 

  
C S

SRWPSPCRPCPWRP ),1|1()()|1()()1,1(  

The inner sum of products 
S

SRWPSP ),1|1()(  has 1*2
1
=2 multiplications. Although the outer sum of products 

 
C S

CRPCP (...))|1()(  contains 4 variables, it has 2*2
1
= 4 multiplications because expressions which don‟t relate 

to variable S such as P(C) and P(R=1|C) are taken out the inner sum of products. So the total number of required 

multiplications is 4+2=6. Six multiplications are saved. 

It is easy to recognize the best ordering of expressions which produces the minimal required multiplications if the 

number of variables is small. How we can do that in case of many variables. The answer relates to the optimal factoring 

problem. 

Given F = (V, S, Q) is defined as the triple consisting of Richard [7, pp. 163]: 

- A set of n nodes (or variables)  V= {X1, X2,…, Xn} 

- A set of m sub-sets S = {S{1}, S{2},…, S{m}} where S{I}  V 

- A target set Q V 

The factoring α of S is a binary tree satisfying three following condition as in Richard [7, pp.164]: 

- All and only member S{I} of S are leaves. 

- The parent of nodes S{I} and S{J} are denoted S{I J} 

- The root of tree is S{1,2,..,m}  

Note that S corresponds to operands of marginal probability and α corresponds with the factorization of marginal 

probability. 

Example 4.1: Like example 3.3.1, let Z, X, Y, T be nodes of Bayesian network shown in following figure 4.1. 

 

Z 

X Y 

T 
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The joint probability is P(Z,X,Y,T) = P(Z)P(X|Z)P(Y|Z)P(T|X). Suppose X is evidence, we need to compute the posterior 

conditional probability P(Z=1|X=1). The marginal probability over Z, X shown below is the sum of products which will 

be optimized: 

 
TY

XTPZYPZXPZPXZP
,

)1|()1|()1|1()1()1,1(  

 The factoring instance F(V, S, Q) is defined as below: 

- V = {Z, X, Y, T} 

- S = {S{1}={Z}, S{2}={X, Z}, S{3}={Y, Z}, S{4}={T,X}} 

- Q = {Z, X} 

Suppose factoring α1, α2 correspond to two factorizations of marginal probability P(Z=1,X=1). 

  
Y T

XTPZYPZXPZP )1|()1|(()1|1()1(
1

  

 
TY

XTPZYPZXPZP
,

2
)1|()1|()1|1()1(  

 

 

Figure 4.2: (a) Factoring α1 and (b) Factoring α2 

Given F, the cost of factoring α denoted costα(F) is two following steps: 

1. Step 1. All non-leave nodes are determined according to formula: 

S{I J} = S{I}  S{J}–W{I  J} where W{I J}= {wQ and w S{k} for all k I J } 

2. Step 2. The cost of each node is computed according to formula: 

S{1,2,3,4}} 

S{1} S{3} S{2} S{4} 

S{1,2} S{3,4} S{1} 

S{1,2,3,4}} 

S{2,3,4} 

S{2} S{3,4} 

S{3} S{4} 

(b) (a) 
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For leaf nodes:       costα(S{j}) = 0, j= m,1  

For non-leaf nodes: costα(S{I J}) = costα(SI) + costα(SJ) + ||
2 JI SS   

where |.| denotes the cardinality of the set. 

The cost of factoring α: costα(F)= costα(S{1,…,m}). The less this cost is, the better binary tree is. 

Applying optimal factoring problem into Bayesian inference, the set of nodes V in F corresponds with variables in 

BN and the tree α corresponds with the ordering of multiplications in marginal probability. The cost of factoring 

instance costα(F) is equal to the number of multiplications. The problem becomes easy when we find out the best binary 

tree α having the least costα(F) and compute the marginal probability with the same ordering of multiplications to this 

tree. 

Back example 3.3.1, the cost of factoring α1 is computed as below: 

costα1(S{1,2,3,4}) = costα1(S{1,2}) + costα1(S{3,4}) = (0+0+2
0
) + (0+0+2

2
) = 5 

    costα2(S{1,2,3,4}) = costα1(S{2,3,4}) + costα1(S{1}) + 2
2
 = costα1(S{2,3,4}) + 0 + 2

2
 

= costα1(S{3,4}) + costα1(S{2}) + 2
2
 + 2

2
 

                                                                           = (0+0+2
1
) + 0 + 2

2
 + 2

2
 = 10 

Because costα1(S{1,2,3,4}) is lesser than costα2(S{1,2,3,4}), the following ordering of multiplications is chosen: 

  
Y T

XTPZYPZXPZPXZP )1|()1|(()1|1()1()1,1(  

5. Conclusions and Policy Recommendations  

In this paper, inference mechanism as a significant domain of Bayesian network (BN) is explored exhaustively. 

Different components of inference mechanism are described with numerical illustrations. Since the inference mechanism 

pays a vital role to communicate the usability of Bayesian network, therefore, keeping in view the gravity of the 

inference mechanism we have paid special attention to explore it exhaustively. Briefly we draw following some more 

conclusions after a little review of the present paper: 

 The ideology of Bayesian network is to apply a mathematical inference tool (namely Bayesian rule) into a 

graph with expectation of extending and enhancing the ability of such tool so as to sole realistic problems, 

especially diagnosis domain. Pearl‟s message propagation algorithm in connection to Bayesian network 

inference has also been depicted in section 3.2. The posterior probabilities are computed after running Pearl‟s 

message propagation algorithm. 

 In view of recent work done by Maurya [3] in the process of developing Bayesian network; it has been 

observed that there arise many problems in continuous case and nodes dependency. In this article, we have 

focused on discrete case only when the probability of each node is discrete CPT, not continuous PDF.  

 The optimal factoring technique has also been applied in section 4 in order to reduce the amount of numeric 

operations by changing the order of combinations of operations. 

 It has been examined that the best ordering of expressions produces the minimal required multiplications if the 

number of variables is small. In case of many variables, the optimal factoring technique is considerably useful. 

 Finally, it is remarked that the inference mechanism in Bayesian network is the key domain. Without inference 

mechanism, other two significant domains of Bayesian network namely parameter and structure learning are 

hardly possible. 
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